Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores
نویسندگان
چکیده
Pd-based nanoparticles are promising candidates for non-Pt catalysts of the oxygen reduction reaction (ORR). Trends in ORR activity of Pd/Cu-alloy-core@Pd-shell nanoparticles are studied by calculating the oxygen binding energy on the Pd surface with different Cu compositions in the alloy core. Density functional theory calculations show that several properties of the nanoparticle surface, including the average oxygen binding energy, d-band center, and the net charge of Pd, are linearly related to the ratio of Cu in the core, demonstrating the capacity to tune ORR activity. Trends in oxygen binding of other core alloys are also studied and show similar linear trends with core composition, providing a design strategy for new ORR catalysts.
منابع مشابه
Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction.
We report that the oxygen binding energy of alloy-core@Pt nanoparticles can be linearly tuned by varying the alloy-core composition. Using this tuning mechanism, we are able to predict optimal compositions for different alloy-core@Pt nanoparticles. Subsequent electrochemical measurements of ORR activities of AuPd@Pt dendrimer-encapsulated nanoparticles (DENs) are in a good agreement with the th...
متن کاملCore-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions
Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shell...
متن کاملCharge redistribution in core-shell nanoparticles to promote oxygen reduction.
Bimetallic core-shell nanoparticles are a class of near-surface alloy catalyst for which there is a high degree of control over size and composition. A challenge for theory is to understand the relationship between their structure and catalytic function and provide guidelines to design new catalysts that take advantage of material properties arising at the nanoscale. In this work, we use densit...
متن کاملCage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy star...
متن کاملHighly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room‐Temperature Electron Reduction for Oxygen Reduction Reaction
Carbon-supported platinum (Pt) and palladium (Pd) alloy catalyst has become a promising alternative electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this work, the synthesis of highly active and stable carbon-supported Pt-Pd alloy catalysts is reported with a room-temperature electron reduction method. The alloy nanoparticles thus prepared show a pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012